SRC economy

Håkan Rosenqvist (presented by Ioannis Dimitriou) SLU

Production costs and profitability

Layout

- Production costs and profitability
- Risk and risk reduction
- Sludge and wastewater in SRC
- Own calculations (from own farm)

Prices of different crops in the coming calculations

Crop	2009	2010	2011	2012	2013
Willow, kr/ton DM	792	858	924	858	836
Reed canary grass,	747	813	879	906	882
kr/ton DM					
Hemp, kr/ton DM	747	813	879	906	882
Wheat (for bread)	1000	1700	1720	1900	1650
kr/ton					
Wheat (spring),	1400	1800	1900	1950	1700
kr/ton					
Barley (fodder),	900	1350	1550	1750	1350
kr/ton					
Rapeseed, kr/ton	2600	3200	4000	4000	3250

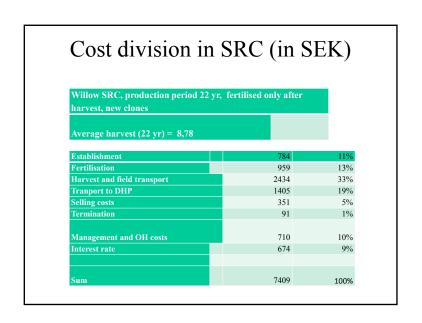
Yield for the different crops used in the calculations

Стор	Low harvest	Low-middle harvest	Middle- high harvest	High harvest
Willow (fertilised)	4,5	6,0	7,5	9,0
Willow (sludge)	4,5	6,0	7,5	9,0
Willow (cutting cycle)	4,5	6,0	7,5	9,0
Reed canary grass	4,5	5,5	6,8	8,2
Нетр	4,5	5,7	7,0	8,5
Wheat (bread)	4,2	5,5	6,8	8,3
Wheat (spring)	3,5	4,5	5,5	7,0
Barley (feed)	3,0	4,2	5,4	6,9
Rapeseed	1,5	2,3	3,3	4,0

Costs and income included in the following calculations

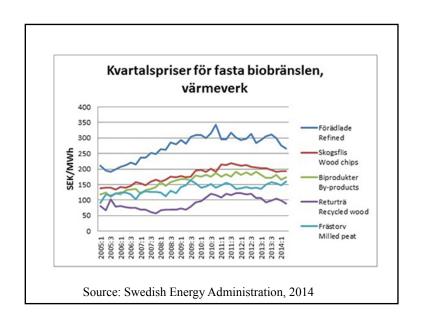
- All costs except the costs for land are included, e.g. OH, depreciation, interest rates och own work
- No subsidies are included, except the 5000 t SEK establishment cost subsidy for willow SRC
- Basic Payment Scheme and greening CAP subsidies are not included in the calculations

Production costs (kr/MWh)


Стор	Low harvest	Low-middle harvest	Middle- high harvest	High harvest
Willow (fertilised)	235	207	190	178
Willow (sludge)	216	192	177	167
Willow (cutting cycle)	173	161	153	148
RCG	279	263	249	239
Hemp	436	390	358	333
Wheat (bread)	447	379	336	304
Wheat	556	467	410	356
Barley (fodder)	645	494	410	346
Rapeseed	716	506	386	338
Straw	161	161	161	161

Gross margins (kr/ha/yr) in 2011

Стор	Low harvest	Low-middle harvest	Middle- high harvest	High harvest
Willow (fertilised)	-380	145	670	1195
Willow (sludge)	-73	476	1024	1573
Willow (cutting cycle)	634	1230	1825	2421
RCG	-1836	-1920	-2028	-2145
Hemp	-5767	-6018	-6290	-6603
Wheat (bread)	-160	1274	2645	4148
Wheat (spring)	-876	375	1623	3486
Barley (fodder)	-2593	-1323	-59	1513
Rapeseed	-1054	1613	4947	7270


Gross margins (kr/ha/yr) in 2013

Сгор	Low harvest	Low-middle harvest	Middle- high harvest	High harvest
Willow (fertilised)	-731	-362	8	377
Willow (sludge)	-428	-36	356	748
Willow (cutting cycle)	311	727	1143	1559
RCG	-1787	-1832	-1891	-1954
Нетр	-5643	-5863	-6100	-6375
Wheat (bread)	-344	1014	2372	3939
Wheat	-1582	-485	613	2259
Barley (fodder)	-3442	-2362	-1282	68
Rapeseed	-2108	-87	2438	4206

Things that improve profitability

- Engagement in the management/cultivation and selling of chips
- Well-managed crops that result in high yields
- Geografical localisation
- Municipal sludge and/or wastewater
- Collaboration between all parts

Price development forest residues

• Yr 2005	137 kr per MWh
• Yr 2006	146 kr per MWh
• Yr 2007	158 kr per MWh
• Yr 2008	167 kr per MWh
• Yr 2009	181 kr per MWh
• Yr 2010	197 kr per MWh
• Yr 2011	214 kr per MWh
• Yr 2012	205 kr per MWh
• Yr 2013	199 kr per MWh
• Yr 2014	194 kr per MWh

Active farmers are required when selling the harvested chops

- Prices between the offered by middle-man/companies and end users can vary significantly
- Investigations of prices from end users, transportation and harvesters are necessary
- Comparisons of costs when the harvest, transport och selling of wood material is done by one farmer or a farmer cooperative is necessary before deciding!

SRC can be very appropriate for a farming business when:

- It coincides with the business goals
- Profitability of existing crops is too low
- Parts of the farm have low fertility
- Work inputs are wished to be reduced
- · As alternative to lease the land
- Business concepts with energy crops

Examples of business concepts with energy crops as a base

- Selling heat
- Dry and sell chips
- Briketting av various feedstock
- Take care of sludge or wastewater
- Feed pigs in SRC
- Biogas production

Fertilisation of willow SRC

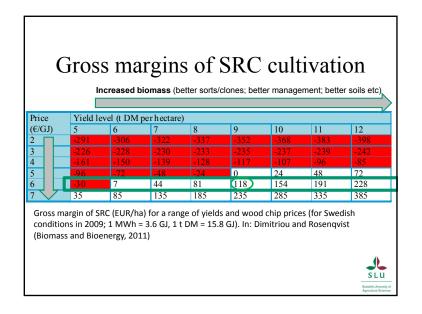
Table 6 Number of sites in our fertilization trial where the different fertilization strategies were calculated to be the most profitable at different costs for fertilizer-N, and at different marginal values of the increased yield

Cost for N	Marg	Marginal value of increased yield (Euro t. DM ⁻¹)								
(Euro kg N ⁻¹)	10	20	30	40	50	60	70	80	90	100
0.7	0=4 E=1	E=2 N=2 I=1	E=1 N=2 I=2	E=1 N=1 I=3	N=1 I=4	N=1 I=4	N=1 I=4	N=1 I=4	N=1 I=4	N=1 I=4
0.9	0=4 E=1	0=3 E=2	E=1 N=2 I=2	E=1 N=2 I=2	E=1 N=1 I=3	N=1 I=4	N=1 I=4	N=1 I=4	N=1 I=4	N=1 I=4
1.1	0=5	0=3 E=2	E=1 N=3 I=1	0=1 N=2 I=2	E=1 N=2 I=2	E=1 N=1 I=3	N=1 I=4	N=1 I=4	N=1 I=4	N=1 I=4
1.3	0=5	0=3 E=2	0=1 E=2 N=2	0=1 N=3 I=1	E=1 N=2 I=2	E=1 N=2 I=2	E=1 N=1 I=3	E=1 N=1 I=3	N=1 I=4	N=1 I=4
1.5	0=5	0=4 E=1	0=3 E=2	0=1 N=3 I=1	E=1 N=2 I=2	E=1 N=2 I=2	E=1 N=2 I=3	E=1 N=1 I=3	E=1 N=1 I=3	N=1 I=4

0=no fertilization; E indicates Economy, i.e., a single dose of 160 kg N ha⁻¹; N indicates normal fertilization with in total 220 kg N ha⁻¹ cutting cycle; I denotes intensive fertilization with 160 kg N ha⁻¹ every year. Colours indicate the predominant optimum strategy

Aronsson, P., Rosenqvist, H., Dimitriou, I., 2014. Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy. Bioenergy Research, 7: 993-1001.

Results from fertilisation trials


- An increase of 59% in yield when new clones were tested (even with low N nitrogen)
- With a netto value for chips of ca 300 kr per t DM it is profitable to fertilise newer clones
- With a netto value for chips of ca 500 kr per t DM it is profitable to fertilise non-bred clones

Greening of CAP

To top up the Basic Payment Scheme, 3 basic measures are foreseen:

- maintaining permanent grassland
- crop diversification
- maintaining an "ecological focus area" of at least 5% of a farm area which is > 15 ha (excluding permanent grassland) i.e. field margins, hedges, trees, fallow land, landscape features, biotopes, buffer strips, afforested area (this figure will rise to 7% in 2017)
- ... but SRC factor in Sweden is 0.3... and fields must not be fertilised with inorganic N and not using herbicides

Sludge and wastewater application

Gross margins of SRC cultivation when sewage sludge is applied

Price	Yield leve	Yield level (t DM/ha)							
(€/GJ)	5	6	7	8	9	10	11	12	
2	-263	-276	-288	-301	-313	-326	-338	-351	
3	-198	-197	-197	-196	-196	-195	-195	-194	
4	-133	-119	-105	-92	-78	-65	-51	-37	
5	-67	-41	-14	13	39	66	92	119	
6	-2	38	77	117	157	196	236	2 76	
7	63	116	169	221	274	327	380	432	

Gross margin of SRC (EUR/ha) for a range of yields and wood chip prices (for Swedish conditions in 2009; 1 MWh = 3.6 GJ, 1 t DM = 15.8 GJ) when sewage sludge is applied. In: Dimitriou and Rosenqvist (Biomass and Bioenergy, 2011)

Sludge application to SRC

- Receiving sludge in SRC fields increase the economy of SRC
- Compensation varies
- A common increase on farm profitability is ca 500 SEK/ha/yr...
- ...but there are broader margins if you consider the alternative ways to treat sludge in ww treatment plants

Wastewater application

- 85-90% saving costs for the wastewater treatment plants (per treated kg N)
- Increased biomass production (fertigation) and saving fertilisation costs (ca 15%)

Gross margins of SRC cultivation when wastewater is applied

Price	Yield level (t DM/ha)							
(€/GJ)	8	9	10	11	12	13	14	15
2	-242	-249	-256	-264	-271	-278	-286	-293
3	-137	-131	-126	-120	-114	-109	-103	-97
4	-33	-14	5	23	42	61	80	98
5	72	103	135	167	199	231	262	294
6	176	221)	266	311	355	400	445	490
7	280	338	396	454	512	570	628	686

Gross margin of SRC (EUR/ha) for a range of yields and wood chip prices (for Swedish conditions in 2009; 1 MWh = 3.6 GJ, 1 t DM = 15.8 GJ) when wastewater is irrigated. In: Dimitriou and Rosenqvist (Biomass and Bioenergy, 2011)

Harvest in January 2009

• Harvest: 16.4 ton DM after 4 years

• Price per ton DM: 673 kr (150 kr per MWh)

• Income: 10 985 SEK/ha

• Harvest costs: 5 079 SEK/ha

• Transport (65 km): 2 349 SEK/ha

• Loading: 813 SEK/ha

• Netto per ha: 2 745 kr/ha

Rosenqvist's own willow SRC field

• Agricultural soil, 110 ha

• Good soil: 85 ha

• Less good soil: 25 ha

• Forest: 80 ha

• Willow SRC: 6 ha

• Willow on the worst part

• Planted 1994

• Older clones with low production

Not fertilised

• Harvested 3 times

• Last harvest: January 2009

Mistakes made

- Too small turning points for the harvest equipment
- Two different clones with different yields
- Too humid at a small part in a small part of the field

TACK!

Kostnader per ton avvattnat slam för svenska reningsverk. Kostnaderna är exkl. spridning

Metod	Antal	Genomsnittlig Kostnad, SEK
Anläggningsjord Deponi inkl. skatt Förbränning Jordbruk Salix	68 12 2 14	239 657 559 226

Kostnader avloppsbevattning

- Investering för bevattning ca 50 000 kr per hektar vid 10 hektars bevattning
- Driftskostnad ca 50 60 öre per kubikmeter vatten